Physiology and pathophysiology of Na+/H+ exchange and Na+ -K+ -2Cl- cotransport in the heart, brain, and blood.

نویسندگان

  • S F Pedersen
  • M E O'Donnell
  • S E Anderson
  • P M Cala
چکیده

Maintenance of a stable cell volume and intracellular pH is critical for normal cell function. Arguably, two of the most important ion transporters involved in these processes are the Na+/H+ exchanger isoform 1 (NHE1) and Na+ -K+ -2Cl- cotransporter isoform 1 (NKCC1). Both NHE1 and NKCC1 are stimulated by cell shrinkage and by numerous other stimuli, including a wide range of hormones and growth factors, and for NHE1, intracellular acidification. Both transporters can be important regulators of cell volume, yet their activity also, directly or indirectly, affects the intracellular concentrations of Na+, Ca2+, Cl-, K+, and H+. Conversely, when either transporter responds to a stimulus other than cell shrinkage and when the driving force is directed to promote Na+ entry, one consequence may be cell swelling. Thus stimulation of NHE1 and/or NKCC1 by a deviation from homeostasis of a given parameter may regulate that parameter at the expense of compromising others, a coupling that may contribute to irreversible cell damage in a number of pathophysiological conditions. This review addresses the roles of NHE1 and NKCC1 in the cellular responses to physiological and pathophysiological stress. The aim is to provide a comprehensive overview of the mechanisms and consequences of stress-induced stimulation of these transporters with focus on the heart, brain, and blood. The physiological stressors reviewed are metabolic/exercise stress, osmotic stress, and mechanical stress, conditions in which NHE1 and NKCC1 play important physiological roles. With respect to pathophysiology, the focus is on ischemia and severe hypoxia where the roles of NHE1 and NKCC1 have been widely studied yet remain controversial and incompletely elucidated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Invited Review Physiology and pathophysiology of Na /H exchange and Na -K -2Cl cotransport in the heart, brain, and blood

Pedersen, S. F., M. E. O’Donnell, S. E. Anderson, and P. M. Cala. Physiology and pathophysiology of Na /H exchange and Na -K -2Cl cotransport in the heart, brain, and blood. Am J Physiol Regul Integr Comp Physiol 291: R1–R25, 2006. First published February 16, 2006; doi:10.1152/ajpregu.00782.2005.—Maintenance of a stable cell volume and intracellular pH is critical for normal cell function. Arg...

متن کامل

A model of Na-K-2Cl cotransport based on ordered ion binding and glide symmetry.

In the duck red blood cell, Na-K-2Cl cotransport exhibits two modes of ion movement: net cotransport and obligate cation exchange. In high-K cells, the predominant exchange is K/K (or K/Rb). In high-Na cells, it becomes Na/Na (or Na/Li). Both represent partial reactions in which a fully loaded carrier releases part of its cargo, rebinds fresh ions, and returns back across the membrane fully loa...

متن کامل

Na+-K+-2Cl-cotransport in Ehrlich cells: regulation by protein phosphatases and kinases.

To identify protein kinases (PK) and phosphatases (PP) involved in regulation of the Na+-K+-2Cl-cotransporter in Ehrlich cells, the effect of various PK and PP inhibitors was examined. The PP-1, PP-2A, and PP-3 inhibitor calyculin A (Cal-A) was a potent activator of Na+-K+-2Cl-cotransport (EC50 = 35 nM). Activation by Cal-A was rapid (<1 min) but transient. Inactivation is probably due to a 10%...

متن کامل

NO inhibits Na+-K+-2Cl- cotransport via a cytochrome P-450-dependent pathway in renal epithelial cells (MMDD1).

Nitric oxide (NO) exerts direct effects on nephron transport. We determined the effect of NO on Na(+)-K(+)-2Cl(-) cotransport in a cell line (MMDD1) with properties of macula densa. Na(+)-K(+)-2Cl(-) cotransport was measured as bumetanide-sensitive (86)Rb(+) uptake in the presence of ouabain. MMDD1 cells expressed mRNA for the neuronal isoform of nitric oxide synthase, as well as NKCC1 and NKCC...

متن کامل

Parietal cells express high levels of Na-K-2Cl cotransporter on migrating into the gastric gland neck.

Na-K-2Cl cotransport and Cl/[Formula: see text] exchange are prominent mechanisms for Cl- uptake in Cl--secreting epithelial cells. We used immunofluorescence microscopy to delineate the distributions of Na-K-2Cl cotransporter-1 (NKCC1) and anion exchanger-2 (AE2) proteins in rat gastric mucosa (zymogenic zone). Parietal cells (PCs) above the neck of the gastric gland contained abundant AE2 but...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 291 1  شماره 

صفحات  -

تاریخ انتشار 2006